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Abstract

Over the last few decades, floor plan analysis and recognition has been an open research topic in computer science, aiming to generate the
building’s model by automatically extracting meaningful information from diverse sources. Among these, the architectural drawings are one
of the most common, typically composed of non-uniform notations, together with their relationship and constraints, defining the structure’s
layout and usage. Usually, floor plans encompass a high variability in style and semantics, as there is no standard notation to describe each
element. Thus, numerous methodologies have been proposed to recognize, vectorize, and model different objects such as walls, doors, and
rooms. In this work, we review different procedures from rule-based and learning-based approaches between the years 1995 to 2021, restricting
only those considering the plan data as a rasterized image format. Datasets, scopes, and performed tasks were summarized to guide future

development within the construction and design industries.
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1 Introduction

Architectural floor plans are documents that result from an ite-
rative design process to define the layout, distribution, and usage
of a structure, playing a crucial role while designing, understan-
ding, or remodeling indoor spaces [1]. Plans are created from the
knowledge and experience of designers and engineers, who use
different annotations to integrate the layout, style, use, scale, and
external properties of each site, like the environment and regulation.
Usually, these documents convey three components to be a valid and
complete 2D drawing description of a 3D scene: (1) geometry, which
defines the shape and dimension of its elements, (2) topology, which
accounts for the connectivity between building components, and
(3) semantics, which describes additional characteristics, such as the
room function [2, 3]. Moreover, floor plans might also include outer
and inner walls, windows, furniture, dimension lines, grids, text,
or icons, alongside the constraints and relationships between them,
making automatic analysis and information recovery a challenging
and open task [1].

Plans have been actively studied in the last 40 years as they
are involved in large industries, such as construction, design, pro-
perty rentals, interior remodeling, or indoor positioning and navi-
gation. Among those, the construction industry, unlike others, has
experienced a low growth rate since the late 1960s in major OECD
economies, such as the US and UK, or even yielded a negative one
(Japan, Germany). Therefore, the declining output per hour worked,
and per person employed, became the focus of extensive research
[4, 5]. A productivity decrease, in particular for construction, has
negative repercussions on the economy, being even one of the key
barometers for the 2009 global financial crisis [6]. For these reasons,
the computer science community has studied several applications to
enhance the design and construction pipelines, simplify the proces-
ses, and mitigate losses, eventually reducing the costs and improving
productivity.

Although plans are designed and built using advanced vector
software, these are frequently stored as raster images in the appli-
cation process [3]. Similarly, for projects designed before the in-
troduction of computer-aided design (CAD) tools, the architectural
documents exist in a paper format that has been manually drawn
and scanned to achieve their digital version [7]. Rasterized plans
allow non-experts and clients (e.g., home buyers and renters) to un-
derstand and acquire information handily. However, these discard
semantic and topological metadata like layer or object information,
as it is generally considered that only humans will review them [8].

Analyzing these rasterized floor plan images and recogni-
zing their components through an automatic procedure is a long-
standing open problem within computer vision, which currently
poses four fundamental challenges. First, there is no standard nota-
tion among architectural and engineering firms, where colors, line
thickness, and symbols usually differ [9]. Second, plans stored as
raster images are commonly characterized by complex, fuzzy archi-
tectural drawings [10]. Third, the plan structure must satisfy high-
level geometric, topologic, and semantic constraints; for example,
doors are embedded within walls, generally composed of parallel
lines, and walls define the perimeter of rooms, in which their label,
furniture, and layout can define its usage. Finally, the floor layout
might vary across examples (e.g., houses or apartments can have a
different room arrangements) [1].

From a technical standpoint, floor plan analysis research aims to
generate the structure model by automatically extracting meaning-
ful information from diverse sources, such as architectural plans or
in-scene photographs [10]. This process regularly involves different
tasks like the recognition of walls and non-structural elements (e.g.,
windows, furniture), the detection and classification of rooms, and
the building 2D/3D reconstruction. Typically, these procedures co-
ver different disciplines within computer science, like image pro-
cessing, pattern and symbol recognition, object vectorization, and
graph modeling.
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Among plan analysis tasks, wall identification is one of the most
common because these objects define the main layout of the building
and convey essential information to detect other elements, such as
doors or beams [11]. Recognizing walls is also helpful across the
spectrum of architecture, engineering, and construction as it pro-
vides data for design, analysis, and cost estimation, among others
[12]. On the other hand, recovery of the room shape and classifi-
cation has also played an essential role since it allows for unders-
tanding the scene and its layout. Both walls and room information,
along with other objects studied in floor plan analysis, has led to
many applications within industry, for example, in Building Infor-
mation Modeling (BIM) reconstruction [13-15], 3D modeling from
2D plans [2, 16, 17], architectural optimization [18, 19], structu-
ral design [20-23], plan synthetic description [24], Virtual Reality
(VR) exploration [25], indoor navigation and modeling [26-28], 3D
reconstruction from in-scene photographs [29-31] and volumetric
points [32, 33], floor plan generation [34-36], building search and
retrieval [12, 37, 38], architectural symbol spoofing [39, 40], plan
sketch interpretation [41-43], apartment price estimation [44], the
generation of accessible plans for visually impaired people [45] or
the automatic analysis of ancient and historical buildings [46—48].

Within related work, wall and room recovery has been tradi-
tionally solved using rule-based image processing methods, which
exploit heuristics to locate the object notations in floor plans using
shape recognition, text filtering, line scanning, and pixel classifi-
cation [49]. Nevertheless, relying on hand-crafted features is in-
sufficient, as it lacks generality to handle diverse conditions [50].
Extensive effort is required to choose proper low-level processing
operations, tune parameters, and craft rules and grammar based
on drawing styles or architectural regularity [16], rules that are
still highly dependent on the plan format [10]. In other words, it
is not easy to generalize the conventional pipelines to deal with
complex annotations and high diversity [27]. For such reasons, se-
veral learning-based methodologies have been recently proposed to
retrieve and model the building objects, mainly by the application
of convolutional neural networks (CNNs), graph neural networks
(GNNs), and generative adversarial networks (GANs), improving
accuracy while keeping a general approach for handling different
input styles [27].

Although some reviewed articles introduced a brief literature
revision [10, 50-52], to our knowledge, a comprehensive one is lac-
king in this area. A review of the methodologies that solve different
problems within floor plan analysis can guide future development
in the construction, design, and engineering industries, for instance,
in BIM and 3D reconstruction [15, 17], or the retrieval of similar
plans from large databases [37], because it provides a quick guide
into which dataset and algorithm must be used to solve a specific
task. In particular, this review conceptualizes the research problem,
describes the used and available datasets, details the methodologies
and their evolution through decades, and presents the challenges &
opportunities for new work to come, providing insights into which
areas must be covered by future developers. Upcoming floor plan
analysis research, combined with its applications, will reduce costs
and increase productivity, especially in these industrial sectors that
need to automate and enhance their processes by creating new and
better software.

The reasons above motivate this review, in which we present

related work to recover, classify, and model the building elements
and layout, only considering the raster images of architectural floor
plans as input. We organize the datasets, methodologies, and results
according to the approach type (rule-based, learning-based) and the
commonly performed task. In total, we select 61 peer-reviewed ar-
ticles from 1995 to 2021 over 118 candidates.

The contributions of this review paper can be classified into four
major areas:

1. We explore and describe the available datasets used throughout
floor plan analysis.

2. We describe the rule and learning-based methodologies that
recognize and model the building objects from rasterized floor
plan images, such as walls, non-structural elements (door, win-
dows), and rooms (shape and usage classification).

3. We identify the common tasks performed in the reviewed
works, organizing them in tables to help future developers se-
lect the most appropriate work according to their needs.

4. We present a selection of floor plan analysis applications within
the industry.

Concerning the paper structure, section 2 presents the approach
for selecting the reviewed literature and conducting the content
analysis. Section 3 describes the article’s detail and summary, consi-
dering rule-based and learning-based methods. Section 4 discusses
the remaining challenges, future directions, and applications. Fi-
nally, section 5 provides the conclusions and summary of the work.

2 Research method

The present study used content analysis [53] to select the re-
viewed literature. Content analysis is commonly used to objectively
make valid inferences according to collected data for disclosing cen-
tral aspects of previous studies, further allowing for qualitative and
quantitative operations [54]. In order to direct the review, the follo-
wing research questions were proposed, which motivated the selec-
tion of the related work:

Q1. What datasets exist within the area of plan analysis; what are
their properties?

Q2. What methodologies exist within the rule-based and learning
approaches?

Q3. What are the common tasks among these methods?

Q4. How has the area of study evolved over the years, considering
the rapid development of artificial intelligence?

Q5. What are the challenges and opportunities within research?

Q6. What are the main applications of these algorithms?

Sample collection was performed in this study by searching
and selecting peer-reviewed articles related to the research ques-
tions. Articles were collected from academic databases and cited
works within them, considering their impact, contributions, and re-
lationship with the review guidelines. The procedure of literature
search and selection for this study can be summarized as follows:



* The academic databases Web of Science, Scopus, IEEE/IET
Xplore, Science Direct, ACM Digital Library, ASCE Library,
ProQuest, and Springer were used for article search and selec-
tion. Also, Semantic Scholar and Connected Papers were em-
ployed to retrieve similar articles powered by Al and interactive
graphs.

+ Keywords such as “floor plan analysis”, “floor plan recognition
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and interpretation”, “floor plan segmentation”, “floor plan ima-
ge”, “apartment structure”, “architectural plan vectorization”,
“room and wall retrieval”, “apartment graph”, “object detection
in floor plans”, and “parsing floor plan images” were used to
search the databases. The search date period ranged from 1995
to December 1%, 2021. For each article, its cross-references and

similar works were also considered for revision.

* The inclusion criteria correspond to English-only and peer-
reviewed articles that used rasterized architectural floor plans
of houses or apartments to perform the analysis. The recogni-
zed objects were walls or other non-structural elements (e.g.,
window, door) and rooms alongside their shape and classifica-
tion, accounting for rule-based and learning-based techniques.
Articles that vectorized or modeled a graph of the structure
were also included.

* Works within floor plan analysis that recognized objects from
sketches, volumetric points, CAD/XML-vector files, in-scene
photographs, or examined other structures such as archaeolo-
gic or industrial complexes were excluded. Articles that did not
consider the building semantics in the recognition, spotting,
or vectorization of objects were also discarded; however, those
that applied their algorithms to architectural plans were men-
tioned without further detail. Finally, articles that were only
abstracts, minor revisions of previous authors’ work, or did not
contemplate the evaluation or validation of their methodolo-
gies were also discarded. In total, 118 candidates were selected
for further revision.

Following the inclusion/exclusion criteria, a two-round selec-
tion technique was employed. In the first round, the titles, abs-
tracts, and keywords of the noted articles were checked to as-
certain if they met the criteria. The second round consisted of
reading and analyzing the entire document, thus ensuring that
all papers were closely related to the aforementioned objecti-
ves. Finally, 61 articles were selected and analyzed for the pre-
sent review.

The analysis of each selected article considers the classification
of its tasks, recognized objects, implemented models, used datasets,
and a summary of the overall procedure. These features allow revie-
wed work to be represented in aggregated form within tables and
figures, detailed in the following section, to quickly examine the
methodologies, leading future developers to choose the appropriate
one for their purposes.

3 Architectural floor plan analysis and
recognition
Architectural floor plan analysis combines sequential processes

that generate building models by automatically extracting mea-
ningful information from rasterized floor plans [10, 13]. As these

documents contain a large quantity of heterogeneous information,
along with its constraints and interactions, most processes involve
different tasks to clean the images and extract valuable data [85].
For example, the pipelines usually pre-process the image to remove
distortions, grids, decorations, or titles through binarization. Text
extraction and classification [86, 87], or line detection [9], are also
common. Typically, pattern recognition, line scanning, or segmenta-
tion approaches are used to retrieve objects such as walls and doors,
some of which are also vectorized to convert the recognized objects
into a vector representation to be editable, scale-independent, and
compact [88]. Room space is detected through geometry and seman-
tic information, including textual data [89]. Symbol recognition is
also an important part of building plan processing, which extracts
labels to identify dimensions, room usages, and objects such as doors
or windows [13, 90-92].

Although floor plan analysis considers many tasks and proces-
ses, they can be classified into four broad categories: (1) Graphics
separation, a pre-processing for object recognition, which removes
graphic elements from floor plans such as furniture or grids that
do not bring new semantic information to the analysis, (2) Object
recognition, a process which recognizes building elements like walls,
openings, and rooms, being the core of the floor plan research, (3)
Vectorization, stage in which the structural elements are transfor-
med into a vector form for their 2D/3D representation and analysis,
and (4) Structural modeling, a process that aims to create a mathema-
tical model of the floor topology, generally as a connected graph by
constructing an adjacency matrix based on the relationship among
plan objects.

Rule-based methods, such as text filtering and line scanning, we-
re initially proposed to recognize and vectorize elements like walls
and rooms [49]. Traditionally, a pre-processing pipeline was carried
out as the first step to separate graphic elements, for example, by
distinguishing between lines of different thicknesses [10]. Neverthe-
less, relying on hand-crafted features is insufficient, as it lacks gene-
rality to handle diverse conditions [50]. Moreover, rule-based algo-
rithms depend heavily on notation and empirical parameters, per-
forming well in specific formats but having limitations in copying
others. Extensive effort is required to choose proper low-level pro-
cessing operations, tune parameters, and craft rules and grammar
based on drawing styles or architectural regularity [16].
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Figure 1: Articles published per year within reviewed works re-
garding rule-based (20) and learning-based (41) approaches.

By contrast, learning-based methods have gained much atten-
tion in recent years as they are trained to achieve the same goals



Table 1: Datasets used by floor plan analysis research.

Dataset Public Annotation Number of
Name, reference (year) access plans
FPLAN-POLY, [55] (2010) v [56]  Walls, doors, windows, and furniture in vectorized format 42
Walls, doors, windows, and 6 different furniture types; 10 different synthetic apartment
SESYD, [57] (2010) v [58] configurations, designed to study symbol recognii’ilc))n. Res 1,837—6,7;,5 b 1,000
CVC-FP, [9, 59] (2010-2015) v [60] Walls, doors, windows, and rooms without type; 4 different subsets. Res 905-7,383 122
R3D - Rent3D, [61] (2015) v [62]  Walls, doors, windows, and room types 215
SydneyHouse, [63] (2016) v [64]  Walls, doors, and windows of multi-unit house floor plans; several styles. Res 404-4,678 174
R-FP - Rakuten, [65] (2017) v [66]  Walls. Res 156-1,427 500
ROBIN, [12] (2017) v [67]  Synthetic 3-5 room apartments; designed to study plan retrieval. Res 1,837-6,775 510
R2V, [1] (2017) v [68]  Walls, openings, and room types. Res 96-1,920 815
CubiCasa5K, [69] (2019) v [70] 80 object categories such as doors, windows, and walls. Res 50-8,000 5,000
RPLAN, [34] (2019) v [71]  Wall, room, boundary, and inside masks; designed to study plan generation 80,788
Korea LH, [72] (2019) v [73]  None. Res 230-5,092 343
BRIDGE, [74] (2019) X Wind.ovs{s, doors, along with other 14 object types. Include region and paragraph 13,000
descriptions
HouseExpo, [75] (2020) v [76]  Binary house wall masks; designed to study indoor-layout learning. Res 110-10,086 35,126
BTL [77] (2020) X None 2,000
EAIS, [28, 78] (2020) X Walls, doors 450
ZSCVEFP, [79] (2021) X Walls, rooms, entry, door, window, and balcony objects 10,800
RFP, [80] (2021) X Walls, doors, windows, doorways, and 7 rooms types. Res 180-3,615 7,000
RuralHomeData, [81] (2021) X Walls, doors, windows, stairs, slopes, text, and 21 room types. Res 1,600-2,560 800
RUB, [82] (2021) v [83] Segment nodes classified as door or non-door, both in image and CAD format. Res 74
500-18,000
LIFULL, [84] (-) X None 5,300,000+

Note: Res — Resolution in pixels (px).

but with better accuracy, handling different input styles [27]. In the
early learning approach, graphic separation and specific segmenta-
tion rules were needed. However, as deep learning was introduced,
the applications have undergone rapid development or were simpli-
fied to a few steps. For example, many used the floor plan images
directly to train the models without the need for complex image
pre-processing pipelines, increasing the analysis versatility [10].
Compared to the rule-based works, the research community has ex-
tensively focused on learning-based methods in the last five years,
mainly due to the advances in machine learning models and the
accessibility to richer and more extensive databases. This trend is
illustrated in Figure 1, which compares the number of published
articles per year from 1995 to December 1%, 2021.

Although there has been a significant improvement in pro-
cessing algorithms over the last years, floor plan analysis and re-
cognition is still considered an open and challenging task [1, 9].
Rule-based algorithms rely on particular plan styles that are hard to
generalize or require expert knowledge to readjust for other formats.
Learning-based models trained on various input floor plan datasets
may have great adaptability. Still, their outputs may be blurry as
they perform pixel-level segmentation, creating problems as some
entities might have unconnected lines [93]. General-purpose object
detection algorithms, such as Faster R-CNN [94] and YOLO [95], as
well as other anchor-based frameworks, cannot retrieve curved or
sloped walls or have problems recognizing objects in different con-
ditions, as there is no suitable annotation to describe the complex
geometrical characteristic of these architectural primitives [79]. Mo-
reover, room detection and recognition depend heavily on structural

elements in the floor plan, such as walls, doors, or windows. Thus, if
a particular plan misses an element or some object polygons are not
closed, it will considerably affect the room formation process [93].
Despite these difficulties and challenges, current works within the
area have tackled many problems, from recognition to vectorization,
with several applications for the construction and design industries
while improving accuracy and generalization to process diverse and
complex floor plans.

The following subsections describe the public and private data-
sets, as well as the rule-based and learning-based methodologies. In
both cases, the reviewed works were cataloged according to the ca-
tegories they satisfy (graphics separation, object recognition, vecto-
rization, structural modeling), the objects they recognize (wall, doo-
r/window, rooms, OCR/dimension), and the model or algorithm im-
plemented.

3.1 Datasets

Datasets have played an essential role within floor plan analysis
because there is no standard notation for their composition; there-
fore, designed models must incorporate specific rules for each parti-
cular style. Typically, the implementations face a high variability in
their design due to three main reasons:

1. The plan representation, where, in best cases, only 70 % of the
graphical information is compliant with a standard rule [96].

2. The nature of these documents, where the total possible con-
figurations and relationships between plan elements are vir-
tually infinite.
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Figure 2: Floor plan image examples from datasets.

3. The way the information is visually represented, for example,
in different styles, formats, or symbols [52].

Moreover, each floor plan dataset has limitations regarding
quantity or complexity. Thus, researchers opt to utilize the data-
sets suitable for their purposes, including specific processing steps
that could not be generalized to others [10].

For such datasets to be helpful in floor plan analysis, there must
be annotations for objects such as walls and rooms. Annotating
floor plans, despite other document types, is a complex and expensi-
ve task, as it requires high-level expertise to recognize the different
elements due to ambiguity in notation [9, 52]. For example, in some
plans, windows can be overlapped with beams, or the slab can con-
tain paths, shafts, or custom symbols defined by the architectural
and structural firms. Even though several practical tools have been
developed to annotate them conveniently [59, 97, 98], it is difficult
to do so because there is no way to guarantee the same annotations
from different experts, especially for complicated plans [10].

The reviewed datasets are summarized in Table 1, considering
their source article, public availability, annotation, and the number
of plans. Figure 2 illustrates a selection of images from the datasets
considered within the review. It can be noted that there are distinct

drawing styles among the apartment and house plans; some have
color and textures (Cases f, h, m, n), room type labels (Cases c-f, h,
i), icons (Cases d, f), dimension lines (Cases ¢, [-n), furniture (Cases
a-i, I, 0), and walls with several styles, angles, and complex arrange-
ments. These diverse settings were exploited by rule-based methods,
described in section 3.2, which recognize walls, doors, windows, fur-
niture, and rooms by defining algorithms that considered different
approaches specific to each style; or by learning-based ones (section
3.3), that trained models to automatically recognize the objects.

3.2 Rule-based methods

Early research within floor plan analysis studied the object re-
cognition and modeling from CAD files, as these vector documents
already contain the exact and accurate geometry of their elements in
separate layers. However, the topologic and semantic properties are
usually not present or exist as icons or text. Examples of early studies
are Cherneff et al. [99], which proposed an interpretation method to
extract the plan structure, i.e., walls, doors, windows, rooms, and its
associated spatial relations considering a limited drawing grammar.
Shape grammar (SGs) was a popular rule-based approach within
automatic floor plan analysis, comprising a set of rules that can
be applied consecutively to generate a geometrical shape, reprodu-
cing the particular architectural styles [100]. Other early works are



the vector segment conversion from line drawings [101], the hand-
sketched plan interpretation [102], and the recognition of symbols
and structural textures from printed or hand-drawn plan sketches
[103]. Despite these examples, this preliminary research did not
analyze the plans concerning the semantics and functional interac-
tion of the elements, for example, the relationship between walls
and rooms or that openings (doors and windows) are usually em-
bedded between two wall segments. Furthermore, these examples
did not consider raster floor plans, which are common when storing
and distributing to customers [3], or processed simplified sketches.
Therefore, the scope was restricted to analyzing vector-based CAD
files or retrieving individual elements from simple format plans.

Among the first works that considered the analysis directly
on raster plans is Ryall et al. [104]. They proposed an early semi-
automatic room segmentation method, which finds regions using a
proximity metric. Despite its significant drawbacks, such as retrie-
ving false positives from slab shafts, doors, or staircases, it serves as
a first approach to extracting objects directly from images, proving
that algorithms can recognize the building semantics and cons-
traints even if they are not apparent from a low-level standpoint.

A major improvement to Ryall’s work happened along with the
contributions of Tombre’s group that studied the automatic recons-
truction of 3D structures from scanned plans [96, 105, 106], who-
se main idea is illustrated in Figure 3. Their approach estimated ti-
ling the high-resolution images, dividing them into independent and
overlapped patches to overcome memory issues, and segmenting the
pixels of thin and thick lines by morphological filtering [107] af-
ter separating graphics and text. The overall process considers two
kinds of walls represented by thick parallel or single lines. Doors are
sought by detecting arcs, windows by finding small loops, and rooms
by even bigger loops. Finally, the segmented pixels are skeletonized
to assemble a vectorized format, which leads to the 3D reconstruc-
tion of a single level [96]. Moreover, a multi-level building recons-
truction is possible if floors are matched by finding special symbols
like corners, staircases, pipes, and bearing walls [105].

Output: Building
3D reconstruction

Input: architectural
raster plans

Segmented and
recognized objects

[ T —
- Graphics separation
(text/noise)
- Object segmentation - Vectorization
- Structural rules - Matching

Figure 3: Reconstruction methodology of a 3D building structure
from rasterized input plans.

Tombre’s group has also intensively studied several rule-based
methods for symbol detection, text separation, and graphics vec-
torization [107-110]. These proposed pipelines completely revolu-
tionized floor plan analysis, contributing methods to assemble and
reconstruct the overlying topologic and semantic constraints em-
bedded in floor plans. However, the implemented symbol detection
strategies are oriented to one specific and limited notation, same

as their 3D building reconstruction method. Thus, a hypothetical
change of the floor plan style might imply reconsidering part of the
algorithms, requiring a new set of threshold values for each case.

Or et al in [111] also focused on 3D model generation from
rasterized plans for one-story buildings. After separating text and
vectorizing the graphical layer with QGAR tools [97], they manually
detected object symbols unrelated to the plan structure, such as cup-
boards, sinks, among others. Once the remaining lines only belong
to walls, doors, and windows, a set of polygons is generated using
each vectorized image’s polyline. Walls are represented by thick
lines, windows by rectangles inside them, and doors by arcs. Simi-
larly, Gimenez et al. [2] proposed another method to reconstruct
the 3D models from image plans. After separating graphics using
a couple of Tombre’s work [112] and QGAR tools, various building
elements were detected based on structural rules, like assigning the
wall to two parallel lines within a certain distance. Finally, 3D buil-
ding models were generated by properly assembling the vectorized
elements. Even though the models achieved a good performance
concerning their plan style, these methods have many predefined
hyper-parameters, manual pre-processing heuristics, or assumed a
specific notation for wall segments; thus, these methods lack gene-
ralizability.

Macé et al. [9] also focused on extracting the structure from
scanned plans and proposed an algorithm to detect rooms. Like
previous examples, text/graphic pre-processing is performed with
QGAR, followed by a thin/thick separation from graphic compo-
nents based on coupling the Hough transform [113] and image
vectorization. The thick lines extracted from this algorithm are re-
garded as wall contours, which authors expected to be parallel, and
are used as the candidates for the wall detection. Finally, doors and
windows are identified to detect rooms through recursive decompo-
sition until convex-shaped regions are found from the wall borders.
Similar to previous works, this approach also considers manual th-
resholds and is limited to a specific notation; thus, the wall detector
must be re-designed to deal with other plan styles.

Mace’s work was later expanded by Ahmed et al. [43, 114], whe-
re they introduced new processing steps like wall edges extraction
and boundary detection, designed for plan retrieval tasks. Their
process starts with wall detection and text/graphics segmentation
[115] to separate graphic components into thin, thick, and, as a no-
velty, medium lines. Walls are assembled from thick and medium
ones, while thin lines are considered to form symbols; components
outside the convex hull of the outer walls were also removed. Then,
doors, windows, and rooms were spotted using SURF [116], which
is a method that provides a good discriminative translation, rota-
tion, and scale-invariant representation of symbols. Finally, the text
inside the rooms was used for their labeling. According to its distri-
bution, the authors further enhance this method by splitting rooms
into many parts as labels are inside them, vertically or horizontally
[86]. It is important to note that these works [43, 86, 114, 115] con-
sider some structural and semantic information as they assembled
the wall contours of each room, labeled them with their name, and
verified their composition using the door and window positions.
However, as before, these methods might have to be revisited when
dealing with floor plans of different graphical conventions.

Several other studies have also considered a line representation



to recognize structural elements from floor plans. Park and Kwon [7]
recognized the main walls of apartments using the auxiliary dimen-
sion line, where windows can be retrieved as a subproduct. Feltes
et al.’s work [117] is capable of finding the object’s corners in wall-
line drawing images by filtering out unnecessary points without
changing the overall structure, especially those that appeared th-
rough over-segmentation of diagonal lines; also, a wall-gap filling
is possible while performing a heuristic criterion. Tang et al. [118]
automatically generated vector drawings by applying various filters,
such as gradient, length, gap-filling, line-merging, and connectivity
under several millimeter sizes, assuming walls are represented by
parallel lines in both vertical and horizontal axis. Pan et al. [119]
detected walls and windows considering empirical rules regarding
their pixel layouts, where the user must adjust the methodology’s
thresholds; bearing walls corresponded to black areas, non-bearing
walls to unfilled parallel rectangles, and windows are composed of
three to four closer parallel lines. De [120] also assumed that only
walls are illustrated as thick black lines in a floor plan layout. Thus,
thick and thin lines can be distinguished using a morphological
transformation; thick lines can be considered walls, whereas arc
lines represent doors. On the other hand, in an effort to overcome
the lack of a standard notation, de las Heras et al. [11] presented
an unsupervised wall segmentation method that assumes walls as
repetitive rectangular elements, placed in orthogonal directions, fi-
lled with the same pattern and naturally distributed across the plan.
Although assumptions might work over a specific notation, they do
not consider semantical relationships or require new rules to adopt
for other plan styles.

Graph-based solutions also have been presented to describe the
underlying structure of floor plans. Sharma et al. [121] proposed a
room layout segmentation and adjacent room detection algorithm
to represent the layout as an undirected graph. The model was deve-
loped to retrieve similar plans from a large database by calculating
a matching score that considered fine-grained features computed
from an assembled Room Adjacency Graph (RAG), where the room
area and furniture types were identified [38]. Similarly, Barducci
et al. [122] described floor plan images by building a RAG, iden-
tifying room purpose from the furniture recognized by graph mat-
ching, without considering textual labels. Their work was further
expanded by Goncu et al. [45], extending the wall, door, and room
identification. Walls were binarized, whose straight-line segments
were identified by the Hough transform and polygonized with the
Ramer-Douglas-Peucker algorithm [123]. Hough transform was also
used to detect arcs, which were later assigned to doors, as previous
examples did.

Figure 4 illustrates an example of a graph model from a com-
plex rasterized floor plan. The circular numbered nodes represent
apartments, red nodes represent the stairs (S) and elevators (E), and
the red inverted triangles stand for hall joints. The squared nodes
belong to bedrooms (blue) and dinner rooms (green). Finally, edges
represent the connectivity between elements.
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Figure 4: Example of a graph model from a rasterized input plan.

Different low-level geometrical vectorization methods have al-
so been developed to obtain the objects from generic line drawings,
for instance, by separating and skeletonizing layers of homogeneous
thickness [124] or by an energy-based approach [125]. Nevertheless,
recognizing floor plan elements without considering their semantic
relationship is error-prone, as each element can be a constraint for
other objects. For example, walls delineate the perimeter of rooms,
defining the layout and conveying essential information to detect
other structural elements, like doors, windows, or openings [11].
For such reason, and as a means to avoid the elaboration of complex
recognition rules, learning-based models have been widely studied,
especially in the last five years. Learning models, detailed in the
following section, allow extracting the complex and hidden rela-
tionships embedded in plan documents directly from the training
data, synthesizing the experience of several architects and structural
engineers, the construction regulation, and human creativity.

Table 2 details the reviewed rule-based methods within floor
plan recognition, considering the datasets used (Table 1) and the
four categories of tasks, such as (1) Graphics separation, (2) Object
recognition, (3) Vectorization, and (4) Structural modeling.

3.3 Learning-based methods

3.3.1 Machine learning in floor plan analysis

Since rule-based methods were introduced in floor plan analysis,
many tasks have been solved with reasonable accuracies, such as re-
cognizing the structural objects and symbols. Nevertheless, methods
have still been confined to a few concise, simplified, and abridged
versions of architectural plans [10]. The lack of a standard notation
and the limited number of public datasets forced the pipelines to
deal with different styles, for example, by applying new rules that
were hard to implement or needed in some cases to fine-tune certain
variables requiring expert design knowledge. These drawbacks, es-
pecially those related to the lack of public data, maintained a limited
development within the area.

However, since 2017, an explosive research of learning-based
methodologies (Figure 1) happened alongside the increase of public
datasets (Table 1) and general-purpose models within the compu-
ter vision field. In contrast to the rule-based methods previously de-
tailed, learning-based pipelines automatically learn the relationship
between floor plan elements by exploiting new low-level and high-
level features directly from hundreds of validated floor plans, im-
proving results while simplifying the analysis. However, learning
methods require a larger volume of data for training and parameter
tuning, which can be challenging to access, extremely expensive, or
unnecessary if only a few concise plans are required to be processed.



Table 2: Rule-based research, sorted by year, considering its tasks and datasets used.

Dataset (number

Object recognition

Ref Strat G. Sep.? Vect.! Mod.*
eference (year) of plans used) rategy °p Wall Door/W’ Room OCRDim® °
[104] (1995) Defined in paper (1)  Proximity field - - v - - -
5 . Tiling, Morphological operations, B B
[96, 105, 106] (1997-2000)  Defined in paper (2) Skeletonization, Feature matching v v v v v
[7] (2003) Defined in paper (1)  Auxilary dimension line, Binarization v v v - v v -
. . QGAR, Segment matching, B B B
[111] (2005) Defined in paper (-) Predefined rules v v v v
QGAR, Hough transform, image
[9] (2010) CVC-FP (80) vectorization, recursive v v v v - v -
decomposition
[115] (2011) CVC-FP (90) Morphological ope.ratlons, connected v v B B v B B
component analysis
[114] (2011) CVC-FP (30) Text/graphics segmentation, line v v v v v v _
separation, SURF
g SURF, post-processing room split, B B B
[86] (2012) CVC-FP (80) predefined rules v v v v
Graph matching, adaptive
SESYD (1000), . .
[122] (2012) FPLAN-POLY (42) threshgldmg, morphological v v v v - - v
operations, Hough transform
[11] (2013) CVC-FP (122) Predefined rules v - - - - -
[117] (2014) CVC-FP (90) Corner (-letectlon and filtering, wall B v B v _ v _
gap closing
Adaptive thresholding, Hough
[45] (2015) CVC-FP (90) transform, Ramer-Douglas-Peucker, v v v v v v v
Voronoi partition, RAG
Boundary extraction, morphological
[121] (2016) SESYD (1000) operations, graph spectral v v v v - - v
embedding
Text and Geometry separation,
[2] (2016) CVC-FP (90) Hough transform, QGAR, predefined v v v - v v v
rules
[118] (2017) Defined in paper (-)  Rule-based filters - - v -
[119] (2017) ](Dlggi;‘ied 1 paper OTSU binarization, predefined rules v v v - - - -
[38] (2018) ROBIN (510) Topological adjacency graph, - - v v . - v
furniture categorization
Defined in paner OTSU binarization, thin/thick
[120] (2019) (80) 10 pap morphological separation, v v v - - v -

skeletonization

2 Graphics separation b Door/Window/Furniture/Others

Among the first approaches, de las Heras and Sanchez [126] pro-
posed a syntactic model for architectural floor plan interpretation.
A stochastic image grammar over an And-Or graph was inferred
to represent the hierarchical, structural, and semantic relations bet-
ween floor plan elements, thus comprising architectural knowledge.
Grammar was augmented with three different probabilistic models,
learned from a training set, to account for the frequency of that
relations. Then, a parser with a pruning strategy was used for the
plan recognition. Walls and doors were detected using Mace’s rule-
based method [9], windows were extracted using a bag of patches
approach, and rooms were assembled by joining each element with
incident neighbors. Despite its recognition results, this work intro-
duced a learnable model for interpreting a plan; however, rule-based
methods were still needed to detect the structural objects. To over-
come the last issue and push learning-based algorithms to become
style-independent, the group later proposed a machine learning
procedure [52] to study and recognize floor plan elements, thus
avoiding the need for complex ad-hoc rules for each notation.

In [52], de las Heras et al. presented a style-invariant, automatic

¢ OCR or object dimensions were recognized

4 Vectorization ¢ Modeling (Graph, other)

method that uses a Support Vector Machine Bag of Visual Words
(SVM-BOVM) to detect the pixel boundaries of the structural ele-
ments. BOVW is a technique that describes an image as a set of
visual words or topics created by clustering similar low-level image
features extracted from training data [127]. With such a technique,
an improved pipeline previously designed by the authors [128, 129]
was proposed, which consisted of two steps, a statistical pixel-level
patch-based segmentation, and structural recognition. The image
patches were classified into three types (doors, walls, and windows)
using the BOVW model. In addition, the pipeline recognizes room
boundaries in the floor plan by finding closed regions surrounded
by vectors in a planar graph of structural entities. Even though
these works achieved a remarkable advance in architectural floor
plan analysis, as learning-based methods were formerly introduced,
the models were still tuned to each particular graphical style in the
CVC-FP dataset [59], using different parameters for each wall type.
Thus, they cannot be generalized to any scenario.

A similar approach based on the SVM-BOVW model was propo-
sed by de las Heras et al. [130], but using an unsupervised segmen-



tation as a preliminary pipeline step to avoid expensive and time-
consuming image labeling [11]. In this work, a template-matching
technique is done by finding parallel and closer lines to seek the
wall-segment candidates; those were also ranked considering a sco-
re based on assumptions regarding the plan style. Finally, a patch-
based SVM-BOVW learns the candidate’s appearance and refines
the initial segmentation. Although the method can be applied to
several un-labeled styles, the walls must fall into strict assumptions.
Furthermore, the semantical relationship between segments is igno-
red, as only the drawing style is considered to query the elements.
For instance, if walls and furniture have a similar line notation, both
are segmented, independent of their semantic representation.

An unsupervised statistical approach was also presented by de
las Heras et al. [131]. In that work, they introduced an attributed
graph grammar that represents the floor plan layout by incorpo-
rating structural and semantical relations to the building objects
learned stochastically from annotated data. The stochastic model
embedded in the grammar allows inferring contextual relations
between architectural elements, adapting the methodology to the
variability while analyzing different plans. Their parsing method
relies on their previous SVM-based pipeline to recognize walls and
doors [130], considering the standard rule-based Hough transform
method. Although this contribution summarizes the techniques
proposed by the group to assemble a complete floor from a style-
invariant model, it relies on complex learning rules, and assumes a
particular format for wall recognition.

After SVM-based models, different algorithms have been propo-
sed in recent years to improve performance, simplify the analysis,
and generalize recognition to more plan styles and formats. Me-
wada et al. [51], for instance, introduced a framework based on
the a-shape algorithm [132] to extract room shapes from binarized
images, calculating and classifying their properties, such as room’s
width, length, area, and type, using a linear regression model. Other
works have also presented learning-based models for classification;
however, rule-based algorithms were still needed to recognize the
objects. Guo and Peng [133], for example, segmented walls conside-
ring their color gradient, eliminating noise by adjusting a threshold.
They used a pre-trained VGG-16 network [134] (Figure 5) to extract
features of the floor plan, inspired by transfer learning, whose goal
is to extract information from related tasks to assist in solving new
ones that lack valid training sets. Later, the wall shapes were clas-
sified with a multi-layer perceptron into rectangle, square, L-shape,
and irregular classes. Another recent example is the work from Park
and Kim [135], which ensembled a 3D model of the building using
rule-based methods to recognize the horizontal and vertical walls;
and considered the learning-based TensorFlow object detection API
to detect the wall junctions, openings (door/window), and rooms.
The results from junctions and walls were used later to assemble a
graph representation of the plan layout employing five generation
rules, allowing to vectorize the elements and reconstruct their 3D
representation.

A Positive Unlabeled (PU) learning-based approach was pre-
sented by Evangelou et al. [136] to retrieve walls similar to a ma-
nual query by the user, exploring object recognition from unlabe-
lled plans as a means to avoid the expensive annotation task. In PU
learning, a binary classifier learns in a semi-supervised way from
positive or unlabelled data points, where the assumption is that the

unlabeled data can contain both positive and negative examples. It
is typically used when labeled data is not available, has many outli-
ners, or the training dataset contains a large number of false nega-
tives [137]. In the context of the proposed method, the query serves
as the positive example of the particular wall template to be mat-
ched, whereas the filtered candidate Regions of Interest (ROIs) of
each floor plan are unlabelled. Despite being a single object retrie-
val model, this SVM-based PU improves the performance concer-
ning the BOVW [52].

Rasterized
input plan

Output vector

Convolution & Max pooling layers

Fully Connected
+ Softmax

Figure 5: VGG model architecture, which extracts features from a
rasterized floor plan image and outputs a vector that can be used
to predict or classify several elements.

Fuzzy rule-based systems (FRBS) have also been studied within
floor plan analysis. Fuzzy logic is an intelligent controller that simu-
lates human behavior by incorporating If-then rules into the system,
thus including human experience and knowledge [138]. Leon-Garza
et al. [127] introduced two Type-1 FRBS models that use fuzzy lo-
gic and similarity of image patches to add context information, an
approach inspired by the BOVW [139] and the patch-based seg-
mentation process proposed by de las Heras et al. [128]. One model
used only pixel-level information (color intensity) and the other
pixel-level and context information to segment floor plans for wall
retrieving. An interval Type-2 FRBS model was also presented by
Leon-Garza et al. [140], which does not need a pre-process step to
remove noise from the image, and outperformed Type-I models in
terms of the Intersection over Union (IoU), a standard metric for
segmentation problems [128, 141]. Although FRBS models are sim-
ple to implement, have low computational cost, are transparent,
explainable, and modifiable by end-users (architects or engineers)
[142], they still suffer common issues from other floor plan analysis
models. In this case, they are hard to generalize to other styles after
learning and rely upon low-level pixel information to compute fea-
tures, such as the color intensity.

While a wide variety of learning algorithms have been presen-
ted in recent years within floor plan analysis research, those that
have achieved state-of-the-art results come with the development
of Deep Learning (DL) technology, especially neural networks [81].
In this way, the role of learning-based methodologies has expan-
ded as graphic separation can be omitted from raw plan images, and
rule-based recognition rules were abridged, as models were trained
to infer them directly from a broad variety of styles [10]. Among
DL models, object segmentation is one of the tasks that has leaded
research in computer vision recently [72] and can be formulated as
a classification (semantic) or partition problem (instance). Seman-
tic segmentation performs pixel-level labeling with a set of object
categories for all image pixels, such as wall, window, or room, by
identifying the spatial feature of the object and reflecting it in the



results. Meanwhile, the instance segmentation extends the classi-
fication scope further by detecting and delineating each object of
interest in the image [143]. As an example, Figure 6 illustrates the
segmented walls of a floor plan image, where it can be noticed that
results are subject to noise and other artifacts, making the recovery
of, for instance, the polygon or the precise contour shape, a non-
trivial task.

(a) Rasterized floor plan. (b) Segmented walls.

Figure 6: Example of segmented walls from a floor plan image.

In the following subsection, the proposed deep learning models
are revised, explaining their approaches in floor plan analysis to re-
cognize, classify, and vectorize structural objects and rooms. Table
3 resumes all learning-based works, considering the datasets used
and the four categories of tasks, such as (1) Graphics separation, (2)
Object recognition, (3) Vectorization, and (4) Structural modeling.

3.3.2 Deep-learning models

Among deep learning techniques, the convolutional neural net-
works (CNN) have been widely employed within floor plan analysis
to automatically extract advanced features, enhancing the recogni-
tion of several structural objects [80]. CNNs are a standard super-
vised learning algorithm, generally used in computer vision due to
their intrinsic relationship with two-dimensional tensor processing,
such as the pixel matrix of an image [152]. CNNs have a topology
composed of convolutional layers, non-linear processing units, and
sampling layers. The first one applies a convolution operator on the
input through a kernel matrix (also known as filters), transforming
the data so that certain features become more dominant in the out-
put. The kernel matrices, commonly used in image processing, can
be manually defined to perform different tasks such as edge detec-
tion, blurring, or contrast change; however, those trained in a CNN
model extract more abstract non-trivial features. The convolutio-
nal layers’ output is later assigned to a non-linear processing unit
(activation function), which helps in the abstraction capacity while
learning and provides non-linearity in the feature space, generating
diverse activation patterns for different responses, facilitating the
learning of semantic differences between the data. The activation
function output is usually followed by a sampling layer (subsam-
pling or oversampling), summarizing the results, and keeping the
input invariant to geometric distortions [22].

CNNs have had a significant boom in detection, segmentation,
classification, generation, and image recovery tasks [153]. For such
reason, they have been widely used throughout related work to
exploit new features hard to capture considering manual rules, as
exemplified in Figure 7. Although CNNs have proved to be power-
ful in image classification and segmentation, they have two main
disadvantages. First, there is a lack of interpretability of how the
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model works for end-users [154], and training requires a lot of labe-
led data for the models to be capable of generalizing correctly [127].
Thus, the development of such procedures led the research commu-
nity to create new, large-scale datasets, which started to be publicly
published after the first works tackled CNNs (2017), as shown in Ta-
ble 1.
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Figure 7: Generic CNN-based model that automatically retrieves
features from a rasterized plan, for example, to segment walls or
classify its objects.

Within deep learning, models can be discriminative or
generative-based. Discriminative models (section 3.3.2.1) learn the
conditional probability distribution of the classes (e.g., wall or back-
ground), that is, the decision boundary, to make predictions on the
unseen data in tasks such as classification, regression, or segmen-
tation. Therefore, their ultimate objective is to separate one class
from another. Conversely, generative models (section 3.3.2.2) learn
the joint probability distribution, that is, the distribution of the indi-
vidual classes in a dataset, to return a probability for a given exam-
ple. Generative learning algorithms tend to model the underlying
patterns or distribution of the data points, and, unlike discrimina-
tive, these are also capable of generating new data points. Figure 8
illustrates the explored deep learning models within floor plan re-
search, which are detailed in the following paragraphs.

[ Deep learning methods ]
[ Discriminative-based ] [ Generative-based }
Semantic segmentation GAN

FCN Conditional GAN
U-Net t Pix2Pix / Pix2PixHD
DeepLab EdgeGAN

> Instance segmentation

L,

— General CNN networks

R-CNN

>

GNNs

Figure 8: Deep learning methods explored within floor plan analy-
sis research.

3.3.2.1 Discriminative-based models

Among discriminative-based models, the semantic segmenta-
tion FCN [141], U-Net [155], DeepLab [156], and instance segmen-
tation model R-CNN [157] have been used. FCNs or Fully Con-
volutional Networks are composed of two main sections: encoder
(contraction) and decoder (expansion). The encoder section is used



Table 3: Learning-based research, sorted by year, considering its tasks and datasets used.

Reference Dataset (number Strategy Aug® G.Sep< Object recognition Veet! Mod.
(year) of used plans)? Wall Door/W.d Room  OCR/Dim.
And-Or graph,
[126] (2011) CVC-FP (25) predefined rule v v v
[128] (2011) CVC-FP (90) BOVW - v v - - - - -
[129] (2013) CVC-FP (100) SVM-BOVM - v v - - - - -
[52] (2014) CVC-FP (122) SVM-BOVM - v v v v - - v
[130] (2014) CVC-FP (122) SVM-BOVM v v v - - - - -
[131] (2015) CVC-FP (122) Stochastic attributed B v v % v _ B v
graph grammar
FCN-2s, Faster
[65] (2017) R-FP (500), CVC-FP (122) RCNN - - v v - v - -
CNN, modified
[1] (2017) R2V (770/100) ResNet-152 v - v v v - v -
[144] (2018) LIFULL (1635/500/500) FCN - - v v v - - v
[145] (2018) Defined in paper (100/15) Pix2PixHD - - - - v - - -
[3] (2018) EAIS (255/35/35) U-Net + PixelDCL - - v v - - - -
[146] (2018) Defined in paper (135) Faster R-CNN v - - v - - - -
. Predefined rule,
[133] (2018) Defined in paper (800/200) VGG-16, MLP - v v - - - - -
MCS, multi-task
[147] (2018) LIFULL (20140/2000) VGG-16 - - - v - - v
VGG, RCF,
[49] (2019) R2V (715/100), R3D (179/53) DeepLabV+, PSPNet - - v v v - - -
[69] (2019) CubiCasa5K (4200/400/400)  Modified ResNet-152 v - v v v - v -
[28, 148] (2020)  EAIS (247/25/47), R-FP (500)  DeepLabV3+ v - v v - - v v
U-Net + PixelDCL,
[77] (2020) BTI (700) Faster R-CNN v v v v - - v -
U-Net, ResNet,
[88] (2020) PFP (1514/40) Transformers v v - - - - v/ -
[51] (2020) CVC-FP (90) a-shape, linear - v - - v - - -
regression
[72] (2020) Korea LH (2400/1030) DeepLabV3+ v - v v v - - -
[8] (2020) CubiCasa5K (480/60) FCN-2s, DeepLabV3+ - - v - - - - -
[27] (2020) CVC-FP (122) Mask-RCNN v - v v v - v -
Defined in paper
[149] (2020) (3500/500/1000) YOLOV3 v v/
[50] (2020) R2V (815), R3D (232) GAN - - v v v - - -
EAIS (400/50), CVC-FP Pix2Pix, multi-task B B B B
[10, 89] (2021) (122) DL v v v
[79] (2021) ZSCVEP (8800/2000) EdgeGAN, GNN - - v - - - v v
[83] (2021) RUB (74) GAT GNN - - - v - - - v
CubiCasa5K (200/200),
[93] (2021) Defined in paper (7) GNN v v v v v v v
RFP (5600/1400), R3D (232),  YOLOV4, - - -
[80] (2021) CubiCasa5K (5000) DeepLabV3+, FCN v/ v/ v v v
[150] (2021) CubiCasa5K (5000) Cascade Mask-RCNN - - v - v - - -
[151] (2021) LIFULL (3800/500/500) DeepLabV3+ - - v v v - - v
: Bagging SVM _ B _ _ _ _ _
[136] (2021) CVC-FP (122), R3D (215) PU-Learning v
[127] (2021) Defined in paper (-) Type-I FRBS - v v - - - - -
[140] (2021) Defined in paper (-) Interval Type-2 FRBS - - v - - - - -
Predefined ruke,
[37] (2021) ROBIN/REDA (5610) Faster R-CNN, YOLO v v v v - - - -
Predefined rule,
[135] (2021) Defined in paper (30/30) TensorFlow Object - - v v v - v v
detection API
RuralHomeData (700/100),
[81] (2021) R2V (770/100), CubiCasa5K VGG-16, U-Net, SSD - - v v 4 v - v

(800/100)

2 Format: (total), (train/test), (train/val/test)
€ OCR or Dimensions were recognized
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to capture the context of the image. It comprises several convolu-
tional and max-pooling layers, which reduce the input image size
by subsampling with kernel stride, capturing finer grain structures
from the input image as they have a smaller receptive field [144]. In
opposition, the decoder section comprises many feature channels
that enable precise localization through the transposed convolu-
tions, propagating context information to higher resolution layers,
giving the segmented output from the generated classification fea-
ture maps.

Similar to FCNs, in U-Net (Figure 9), the decoder also com-
bines the feature and spatial information through a sequence of
up-convolutions and concatenations with high-resolution features
obtained from the encoder, improving localization and reconstruc-
tion of the segmented output image while keeping the underlying
structure. Therefore, the expansive path is symmetric to the con-
tracting part, yielding an u-shaped architecture [155]. Likewise,
DeepLab is a semantic segmentation model which employs a pre-
trained CNN to get encoded feature maps from the input and a
decoder to reconstruct the segmented output image. Among their
different versions, DeepLabV3+ has achieved state-of-the-art results,
famous for its stacked atrous (i.e., dilated) convolutions, enlarging
the kernel’s field-of-view to extract long-distance features. Finally,
the instance segmentation R-CNN is a family of models which pro-
duces a set of bounding boxes for each object in the image, named
regions of interests (ROIs), where the position and category (e.g.,
wall) are inferred using neural networks.

Concerning the discriminative semantic segmentation problem
in floor plan analysis, Dodge et al. [65] were the first to propose
an FCN-2s model to segment walls and Faster R-CNN to detect ob-
jects such as doors, among other five classes. They also implemen-
ted OCR to recognize the room size and place furniture scaled to
the scene. The wall segmentation experiments conducted in Dod-
ge’s work demonstrated the superiority of a CNN-based approach
compared with some traditional patch-based models that use stan-
dard shallow classifiers like support vector machines [69]; while also
proving that CNNs can handle various drawing styles. Yamasaki et
al. [144] also presented a fully convolutional end-to-end FCN net-
work to label pixels of 12 different object classes. For this purpose, a
semantic segmentation was performed, taking as input the images of
apartment floor plans, in which spatial relations between elements
and room boundaries were ignored; the classified pixels formed a
graph to model the structure and measure the structural similarity
for apartment retrieval.

Rasterized
input plan

Segmented
output plan

Skip connections

Decoder

Encoder

Figure 9: A U-Net model which segments the walls from a raste-
rized floor plan image. Layer legend: (yellow) convolutional block,
(orange) max-pool, (blue) up-sampling, and (purple) softmax.

A U-Net approach was introduced by Yang et al. [3], where the
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authors also employed the pixel deconvolutional layers PixeIDCL
[158] to avoid checkerboard artifacts while segmenting walls and
doors. This work was extended by Surikov et al. [77], who detec-
ted objects with the Faster R-CNN model and proposed statistical
methods to vectorize walls, doors, and windows. Morphological
operations were used to remove border defects, component filtra-
tion to remove connected objects, and the Ramer-Douglas-Peucker
algorithm to extract and simplify the room contours. Egiazarian et
al. [88] obtained the line primitives from floor plan drawings, using
U-Net for pre-processing (eliminate background, imperfections, and
fill missing parts); then, the resulting images were splitted into pat-
ches to independently estimate the line and curve primitives with
a feed-forward Artificial Neural Network (ANN). Each patch is en-
coded with a ResNet-based feature estimator [159] and decoded
using Transformer blocks [160] that allow varying the number of
output primitives per patch. Predicted primitives were later refined
and aligned to the raster image through an optimization procedure.
Finally, Lu et al. [81] adopted a joint deep neural network approach
to extract elements and text simultaneously from an architectural
floor plan image, splitted into patches to overcome information loss
of wall lines if downsampled. A VGG-16 encoder was considered to
get a common feature map and extract latent features of the input
image. Then, a U-Net model was used to predict the mask and class
of architectural elements, and a pre-trained fast Single Shot Detector
(SSD) [161] was considered to retrieve the bounding boxes of room
types’ text. Predicted per-pixel classes were optimized to remove
boundary noise and assign unlabeled adjacent ones, for example, in
pixels belonging to a wall that was blurred or partitioned into sma-
ller but connected elements. These classes then fed a mixed-integer
quadratic programming algorithm to designate a rectangle for each
room beside its type recognized by OCR, leading to the assemble of
a room layout graph and the 3D reconstruction of the building.

The DeepLab semantic segmentation models have also been
widely used among deep learning approaches. Jang et al. [28, 148]
segmented walls and doors using the DeepLabV3+ model; center-
line [162] and corner [163] algorithms were proposed to vectorize
the walls and doors, leading to the assemble of a node-edge graph
to describe their position, connectivity, and thickness obtained by
a moving kernel method. Seo et al. [72] also used DeepLabV3+ to
recognize walls, windows, doors, and room types from eight clas-
ses; data augmentation techniques were further studied to improve
the model results in terms of the IoU metric. Yamada et al. [151]
conducted semantic segmentation with the DeepLabV3+ model to
recognize objects from 14 classes, which was later used to assemble
a graph in a rule-based procedure for apartment retrieval. Nodes
were created by extracting regions with a particular area, and edges
were created between rooms adjacent to the same door or directly
adjacent to each other. Finally, Zhu et al. [8] compared different trai-
ning strategies to parse complex floor plans considering the FCN-2s
and DeepLabV3+ models for wall segmentation, with VGG-16 as a
backbone.

Within instance segmentation models, Faster R-CNN (Figure 10)
and YOLO, as well as other anchor-based frameworks, have been
used to detect the building elements, as these propose and combine
numerous boxes based on the IoU to detect and classify the objects,
such as walls, doors, or windows. However, if these general-purpose
frameworks are used without further post-processing, the ground-
truth inflated boxes and the lack of suitable annotation to describe



the complex geometrical characteristic of architectural primitives
lead to problems in the localization of sloped and curved walls.
Thus, instance segmentation models can only replace some modu-
les of the conventional pipeline. Anchor-free frameworks, such as
CenterNet [164] and CornerNet [165], cannot solve this problem
either. For such reasons, only anchor-based frameworks were ex-
plored within floor plan analysis [79].

From anchor-based frameworks, Wu et al. [27] used Mask-RCNN
[166] to vectorize the walls by finding a rectangle proposal represen-
ting each segment’s width, thickness, angle, and location. After sim-
plifying and merging the proposals, an optimization model adjusts
its vertex coordinates to resolve inconsistencies from adjacent rec-
tangles such as overlaps and gaps conform to the topological cons-
traints. Although the complex wall layout was described as simply
connected segments, the rectangle-based modeling is able to reduce
the shape complexity of the segmented regions and can represent the
polygons in high accuracy while retaining the connection topology
[21]. Murugan et al. [150] segmented walls and rooms using the Cas-
cade Mask R-CNN model [167]; wall corners were also detected with
a Keypoint Mask R-CNN to improve results after post-processing.
The YOLOv3 model [168] was employed by Wang et al. [149] to de-
tect doors and windows, alongside the classification of eight types
of rooms with the C4.5 decision tree. C4.5 is a tree-like structure
method that minimizes the measure of entropy (or impurity) by se-
parating the dataset into smaller classes. On the other hand, Khade
et al. [37] proposed a scale-invariant algorithm to remove doors, seg-
ment walls, and trace the outer shape of the floor plan for Content-
Based Image Retrieval (CBIR). Furniture objects from 12 different
classes were also detected and classified, wherein Faster R-CNN has
a better performance concerning the YOLO model.
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Figure 10: Instance segmentation Faster R-CNN model [94] that
considers a floor plan image as input and predicts the position of
the objects inside region proposals.

Recently, Lv et al. [80] presented a framework that combines
the multi-modal information of the floor plan, such as room struc-
ture, type, symbols, text, and scale, to recognize and reconstruct
its elements. The anchor-based model YOLOv4 [169] is employed
to detect the ROIs alongside the text, number, and symbols contai-
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ning semantic and contextual information like room types, dimen-
sions, or areas. Twelve object classes, and the endpoints of doors,
windows, and doorways, were extracted with DeepLabV3+ [156]
model. In terms of the model training, the affinity field loss [170]
was used to incorporate structural reasoning into semantic seg-
mentation, despite the standard cross-entropy loss that lacks spatial
discrimination ability to distinguish between similar or mixed pi-
xels, outperforming previous works [1, 49]. Scale calculation was
also implemented to retrieve the size of each object; for such an
aim, dimension lines were detected by obtaining its endpoints with
a modified FCN network, matched with the recognized length texts
by YOLO. Finally, a room vectorization algorithm was proposed that
considered room contour and wall centerline optimization, leading
to the 3D reconstruction of each floor plan image.

Some works do not consider a segmentation pipeline but pro-
pose CNNs to capture spatial features to reconstruct the objects.
For instance, Liu et al. [1] introduced a deep-learning CNN model
to vectorize the plans. The pixel-wise semantic ResNet-152 network
was applied to detect junction points of interior and exterior walls,
considering a Manhattan assumption, that is, it only can recognize
horizontal or vertical walls due to the use of a template matching
technique. These detected objects fed an integer programming (IP)
method to construct the vector data by finding the optimal primiti-
ve pair that correctly represented walls and openings such as doors
or windows, leading to the assembly of the rooms. Despite their
drawbacks, the major finding was that deep neural networks could
act as an effective precursor to the final post-processing heuristics
to restore the floor plan elements, including their geometry and se-
mantics. Liu’s work was further extended by Kalervo et al. [69], who
also proposed a modified ResNet-152 model to detect wall junctions,
rooms, and icons, obtaining better results as they applied a trainable
module [171] for tuning the relative weights between the multi-task
loss terms; similarly, these outputs were employed to vectorize the
floor plan. Another example is Zeng et al. [49], who proposed a deep
multi-task neural network to predict room-boundary objects (walls,
doors, or windows) and room types. A shared VGG encoder [134]
was used for feature extraction and two separate VGG decoders to
perform both tasks, recognizing individual elements considering
their spatial relationship and a room-boundary guided attention
mechanism to enhance the pixel classification performance of the
floor plan image. The results were compared against the RCF edge
detection model [172], DeepLabV3+, and PSPNet [173] segmenta-
tion networks, obtaining better results.

Graph neural networks (GNN) have also been studied to mo-
del and classify the floor plan objects, describing a way to express
the nodes’ order and connectivity learned from the dataset structu-
re [174, 175]. GNNs have undergone rapid development in recent
years as convolution was introduced to update the latent node vec-
tor (GCN) or by studying graph operations such as aggregation or
combination powered by deep neural networks [176]. Like other DL
models, it extracts and compares a unique embedding vector of each
entity in the target dataset to predict a result as close as possible to
the label data [93]. The domain of interest of GNN varies, including
nodes, edges, graphs, and subgraphs, and has been widely applied
in the area, for example, to generate floor plans [35] or for architec-
tural symbol-detection tasks [39].

Among GNN approaches, Simonsen et al. [82] implemented a



GNN-based model to classify the nodes of a large rasterized CAD
image as door or non-door. On the other hand, Song and Yu [93] de-
veloped a framework to vectorize the floor plan objects considering
a GNN for object classification. First, a pre-processing task erased
texts and binarized the raster plan. The processed image is then vec-
torized, relying on its closed regions, and converted to a region adja-
cency graph according to their adjacent relationship with neighbo-
ring polygons. The graph is then fed to an inductive learning-based
GNN, which compares multiple floor plan graphs and performs node
classification by analyzing inherent features and the relationships,
such as the distance. Despite its good performance while classifying
elements, the proposed GNN approach, unlike those CNN-based, is
not robust to noise and resolution changes.

3.3.2.2 Generative-based models

Ever since Goodfellow et al. [177] presented the generative ad-
versarial network (GAN) in 2014, there has been tremendous deve-
lopment in generative models and neural style transfer [178, 179].
By providing training data in pairs, the algorithm finds the most
suitable parameters in the network so that the discriminator has the
least potential to distinguish the generated data from the original
one [145]. GAN has sprouted many branches, including conditio-
nal GAN [180, 181], Wasserstein GAN [182], or Pix2Pix [183], and
has been used successfully in image translation, style migration,
denoising, superresolution and repair, image matting, semantic seg-
mentation, and dataset expansion [184, 185].

From related work, one of the GAN applications is for recog-
nizing structural objects. Zhang et al. [50] created direction-aware,
learnable, and additive kernels to optimize the recognition of com-
plex and irregular walls through the context module and convolu-
tional blocks of a multi-task GAN-based neural network, improving
accuracy and segmentation results of the objects (wall, door, win-
dow, and rooms). Despite this example, most researchers considered
GANs for image style transfer, as it offers the capability to uniform
the level of detail from varied types of drawings, leading to the re-
cognition of primitives from complicated and overlapping graphics.

Recently, image style transfer models have improved remar-
kably with the development of GANs; among them, the deep net-
works such as Conditional GANs (cGANSs) [180, 181], CycleGANs
[186], and DiscoGANSs [187] have gained a great reputation. cGANs
and CycleGANSs transfer images into different styles while preser-
ving the underlying structure, whereas DiscoGANSs focus primarily
on their texture [89]. The cGANs model assumes that labeled pairs
exist within the dataset, turning the original generation process into
a conditional one. In this aspect, labeled data, such as one-hot vec-
tors, two-dimensional images, or even three-dimensional models,
provides hints to guide the training process; once it runs toward an
unexpected direction, punishment will be given to correct its ten-
dency according to the additional information [145]. Thus, cGANs
learn the forward mapping, that is, y = G(x), where x belongs to
the input, y to the output, and G to the generative model. On the
other hand, CycleGANs and DiscoGANs aim to transfer the sty-
le between domains even when their images are not paired [89],
learning from a two-cycle mapping, i.e., x = F(y’) = F(G(x)) and
y = G(x’) = G(F(y)), with the input x and output y unpaired.
Although CycleGANS have a wider range of general-purpose appli-
cations [79] as it does not require a pixel-level annotation for the
images, which can be extremely expensive, the lack of large-scale
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datasets imposes a difficult restriction for its usage within floor plan
analysis. Therefore, only conditional GANs have been used so far.

One important milestone of GAN for image translation is
Pix2Pix introduced by Isola et al. [183], developed from cGAN [181]
using an encoder-decoder architecture for the generator, for exam-
ple, the “U-Net” model. Pix2Pix was designed to become a general-
purpose solution to translate an image between two domains with
the same settings, corresponding, in other words, to a pixel-by-pixel
mapping. For instance, Isola’s group originally employed Pix2Pix to
generate: (1) a real photo from a partly-damaged one, (2) a colorful
map from a black-and-white map, and (3) an image with texture
and shadow from a linear sketch [145]. Based on Pix2Pix, Wang et
al. [188] presented Pix2PixHD, expanding its capabilities to handle
high-resolution image synthesis and semantic manipulation (from
original 256*256 to 2048*1024) by introducing a new robust adversa-
rial learning objective together with new multi-scale generator and
discriminator architectures [79].

Concerning the recognition and generation of floor plans,
Huang and Zheng [145] introduced an application of Pix2PixHD
[188] to detect rooms from 8 classes and then colorize them to ge-
nerate a new image. In this example, the conditional GANSs lead to
translating the raster plan to a segmented style using annotated
pairs, classifying each pixel while preserving the image’s underl-
ying structure. Pix2Pix was also adopted by Kim et al. [10, 89] to
transform plans into a unified format [183]. In their study, a multi-
task deep learning network transferred the style and simultaneo-
usly extracted the wall junction features (Liu et al. [1]), considering
a Manhattan assumption. These outputs were used to assemble the
wall’s vector format through a combinatorial optimization that re-
presents a structure similar to the style-transferred plan, while sa-
tisfying the semantic constraints from the floor layout.

Rasterized
input plan

Discriminator

Segmented
output plan

Generator

Figure 11: Pix2Pix model that translates the rasterized floor plan
image style into a segmented format.

Finally, Dong et al. [79] developed an edge extraction GAN, na-
med EdgeGAN, to detect walls based on Pix2Pix. EdgeGAN projects
the floor plans into a Primitive Feature Map (PFM); each channel
contains some lines representing one category of primitives, leading
to the vectorization of walls in an end-to-end manner. Two inspec-
tion modules were also proposed to check the connectivity and con-
sistency of PFM based on the Subspace Connective Graph (SCG). The
first module contains four criteria that correspond to the sufficient
conditions of a fully connected graph. The second module classifies
the category of all subspaces via one single graph neural network,
which should be consistent with the text annotations in the original
floor plan.



4 Challenges and opportunities

Automatic floor plan analysis has seen remarkable progress over
the last few years with the help of DL models. Several novel ideas
have been proposed (such as recognizing the wall joints for vec-
torizing the plan, the use of generative image-to-image networks
to convert plans to a unified format, or the application of custom
losses to incorporate structural reasoning into the segmentation
phase), which lead improving the recognition metrics concerning
rule-based models. However, despite the progress, there are still
challenges to be addressed. Thus, in the following paragraphs, we
present and discuss some of these challenges, which can guide fu-
ture development in the field:

Standardization of result analysis. Although each reviewed
article contemplated the evaluation of its methodologies, the lack of
a standard procedure makes it difficult to compare with other simi-
lar works. Several metrics have been used even to check the results
of the same tasks, and many use custom ones that fit their specific
purposes. Table 4 groups the typical metrics used throughout revie-
wed works; typically, segmentation results were evaluated in terms
of the intersection over union (IoU) [141], pixel/class accuracy, and
the Jaccard Index (JI) proposed by de Las Heras et al. [52]. By con-
trast, works that detected objects (e.g., walls, doors, windows) used
the mean average precision (mAP), the recall & precision, the match
score (MS), detection rate (DR), and recognition accuracy (RA) [189],
or considered a confusion matrix.

Table 4: Common metrics used to evaluate results among revie-
wed articles.

Article
[3, 8, 28, 49, 50, 65, 69, 72, 77, 80—

Evaluation metric

Intersection over

Union (IoU) 82, 88, 127, 140, 151, 190]

. [1, 3, 49-52, 65, 69, 79—

1

Pixel/Class Accuracy g5 55 135 135, 144, 147, 149-151]
Jaccard Index (JT) [2, 11, 65, 129, 130, 136]
Mean Average
Precision (mAP) (37,77, 81]
Precision [27, 49, 82, 146, 147, 149, 150, 190]
Recall [1, 27, 49, 69, 82, 129, 130, 135, 146,

147, 150, 190]
(10, 27, 52, 86, 114, 117, 131]
[9, 10, 86, 114, 117, 131]

Match Score (MS)
Detection Rate (DR)
Recognition
Accuracy (RA)
Confusion Matrix

[10, 86, 114, 117, 131]

(2, 28,79, 145, 147, 149]

Besides the multiple evaluation metrics used, there is no shared
annotation for complicated floor plan datasets, which are funda-
mental barriers for learning-based approaches to compare each
other [10]. Private datasets, popular in the last few years, further
complicate this issue [140]. Thus, there is an urgent need to stan-
dardize how analysis is performed on each task. A common metric,
which also requires a standard representation of the plan annota-
tion, allows comparing the models and choosing the one with better
results for a particular plan style and task.

New public datasets. Like in many other computer vision tasks,
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datasets play an essential role within automatic floor plan analysis.
These documents define the geometrical, topological, and seman-
tical information of plan objects in a highly correlated fashion,
following strict restrictions such as usability, layout, and regulation
[2, 3]. New datasets can provide researchers with more possible
styles for the models to handle, especially if future learning-based
methodologies are toward a style-independent trend.

Another major problem regarding datasets is that most current
public ones consider only houses or apartments (Figure 2); however,
the construction and design scope is extensive. For instance, many
architectural offices process multi-unit plans, offices, and public buil-
dings like universities and hospitals. These examples are more com-
plex than currently available datasets; it is just a massive scale dif-
ference. Incorporating such samples can expand the scope of floor
plan analysis, enabling the process of different sources among the in-
dustry. Figure 12 illustrates a sample of a multi-unit raster floor plan;
unlike those presented in the reviewed datasets (Table 1), this plan
has complex walls, more furniture, and new semantics. For exam-
ple, some walls separate two rooms of different apartments, which
together constitute the perimeter of the building. This new level of
complexity is not explicit, but it is only apparent when processing
the plan as a whole.

Figure 12: Example of a rasterized multi-unit floor plan [21].

Non-supervised DL models. Annotating floor plans is difficult
and expensive. There is no standard notation, and some examples
offer ambiguous situations that are difficult even for experts [9, 52].
For example, consider a plan in black-and-white color where win-
dows and beams have the same annotation; in such a case, these
objects are only differentiable concerning a structural perspective.
Hence, non-supervised models allow the analysis without anno-
tating the floor plans. Currently, few works have proposed unsu-
pervised methods [11, 130, 131]; nevertheless, they fall into strict
assumptions or rely on complex learning rules. In this sense, DL
can help to learn these relationships and structural reasoning for
recognizing new complex objects for upcoming plan styles and can
enable the analysis of unexploited datasets.

Combination of rule-based and learning-based methods.
While learning-based algorithms have revolutionized the plan re-
cognition area, they still have problems in solving tasks that require
a deterministic response or fine detail. Therefore, the combination
of rule-based models and learning can offer the best of both worlds.
The former solves fine details that are difficult to capture by a DL



model because they are infrequent or require a high refinement le-
vel, such as polygon resolution, the detailing of certain sections of
complex geometry, or the recognition of custom objects. The latter
allows solving common problems that require specific rules such as
segmentation or vectorization. Both mechanisms are not mutually
exclusive and can be leveraged.

Trending applications within the industry. As architectu-
ral floor plans are one of the key products in architectural firms
or structural engineering offices, the algorithms that can analyze
and process them in batches have many applications, as they allow
to automatize pipelines in recognition, vectorization, modeling, or
searching in large databases.

One of the most active research areas belongs to BIM and 3D
reconstruction, as these technologies help to improve productivity
and reduce costs in different stages of the building lifecycle, espe-
cially in the early ones, requiring less paperwork to visualize or edit
the projects. Also, in recent years, governments and private compa-
nies have started a more data-driven approach because models are
composed of several elements that contain information about their
properties and relationships with others, facilitating interdiscipli-
nary work [191]. Despite benefits, BIM and 3D models are costly
and time-consuming to produce [13], particularly if the only availa-
ble documentation is 2D scanned images of their paper floor plans
[127]. Therefore, one critical short-term research challenge in the
renovation scope is to devise effective and reliable methods and tools
to reconstruct the digital models of existing buildings [2]. In BIM
and 3D reconstruction areas, algorithms have been developed sin-
ce the early 2000s to recognize and vectorize building shapes from
walls, beams, and slabs [106]. Zhao et al. [15] recently implemen-
ted a framework to assemble a BIM representation from CAD files,
employing revised deep learning techniques such as Faster R-CNN
and YOLO. In this aspect, the accuracy and generalization ability to
process plans in different styles are critical aspects of research.

Indoor data models, maps, and spatial information is another wi-
dely studied area of application, with a globally growing market that
is predicted to expand from $2.6bn in 2017 to $43bn by 2025 [82]. For
such reason, research has been conducted on generating indoor spa-
tial information from various data such as LiDAR (Light Detection
and Ranging), BIM, and 2D floor plans [28]. As rasterized floor plans
are more accessible compared to other sources but discard semantic
and topological metadata [8], the revised algorithms of this review
paper can be employed to re-assemble this representation by spot-
ting, retrieving, and vectorizing the founding components of indoor
maps automatically, like doors, walls, corridors, and furniture, or by
detecting the usage of rooms, avoiding time-consuming human la-
bor. Naturally, automatic procedures come with several challenges,
mainly caused by the diversity of floor plans and the flexibility of
preferences in visual styles, symbols, and topology [27].

Building search retrieval is another example of an application
with growing interest. Because of the increasing demand for apart-
ment search, the emergence of online platforms has made this task
easier. Nevertheless, most only provide information regarding lo-
cation, monthly rent, or room size, but little information on plan
structure [144], which turns the searching process into a tedious task
[37]. For such reasons, research community has developed several
tools to simplify this process. Examples include the use of graphs
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to query similar floor plans among large databases [12, 37, 38], the
search based on hand-made sketches [41-43], the use of natural
language to describe the plan layout [24], the audio feedback me-
chanisms to help visually-impaired people navigate floor plans [45],
the development of VR experiences for customers to explore real es-
tates [25], or the use of Al networks to valuate them [44]. Due to the
massive amount of data and the variety of styles, reviewed machine
learning solutions, like CNN and GNN, have been used extensively
to describe, extract, and query the meaningful features of the floor
plans, allowing developers to create accessible and easy-to-use tools
to customers, enhancing the overall experience.

Structural analysis is another area where floor plan research al-
gorithms can be applied. New machine learning models can be trai-
ned to automatically ensemble a structural floor plan from an ar-
chitectural image, predicting new walls and computing its mem-
bers’ thickness, length, and displacement [22, 23]. For such reason,
there is a considerable need for processed datasets that consider
a wide range of architectural styles and layouts to train these al-
gorithms. By this means, discriminative deep-learning models, for
example R-CNN, can be employed to transform rasterized plans into
a rectangle-based representation [21] to compute features, avoiding
expensive manual labeling. These upcoming solutions can simplify
the decision processes, reduce costs, and improve productivity, whi-
le also adding value to the already manufactured plans, which can
now be employed to develop data-driven models and improve the
production lines of the structural engineering offices.

5 Conclusions

This study reviewed related work within architectural floor plan
analysis that used rasterized images to automatically retrieve objects
like walls, doors, windows, and rooms. In the following, the major
findings related to each research question are summarized.

Concerning the revised methodologies, authors have traditio-
nally considered rule-based methods that exploited low-level heuris-
tics to retrieve the desired objects in the plans, generally by solving
four common tasks: (1) Graphics separation, which removes undesi-
rable elements from plans, (2) Object recognition, which recognizes
the building elements from the image, (3) Vectorization, a process
that transforms the objects to a vector form, and (4) Structural mo-
deling, which transforms the floor objects to a mathematical model.
Most methods that employ manual rules to solve these tasks are res-
tricted to the datasets researchers used, as plans can have different
styles, semantics, layouts, and inner-correlations, limiting the range
these rules can handle.

Since the plans are complex, diverse in style, but difficult to
access and produce, rule-based algorithms kept a limited develop-
ment until learning-based algorithms were introduced. Unlike the
previous ones, these methodologies automatically learn the rela-
tionship between the floor plan elements, exploiting low and high-
level features directly from the training data, composed of dozens of
validated plans from a wide variety of styles. Thus, the thresholds,
limitations, and rules embedded in these documents are inferred.
From the learning approach, deep learning, especially those related
to neural networks, has reached the analysis to the state-of-the-art
results in terms of accuracy and other metrics such as the intersec-
tion over union. These models can compute complex and non-trivial



features from the plan data, which are challenging to reproduce ma-
nually, and usually avoids graphic separation as the raw plan images
can be used without further pre-processing.

Even though remarkable results have been achieved in the last
few years, floor plan analysis is still considered an open task within
computer vision. For instance, rule-based algorithms rely on par-
ticular plan styles, being hard to generalize for other formats. On
the other hand, learning-based models trained on various datasets
might have great adaptability, but their outputs are usually blurry as
they perform pixel-level segmentation or can have significant diffe-
rences if an object is missing. Also, learning models require a high
number of plans to train and generalize the results; and this can be
extremely expensive or unnecessary if only a couple of plans have
to be processed. Thus, future work is needed to achieve an accurate
and style-independent recognition.

Despite the difficulties and limitations, current methods have
multiple applications within the construction and design industry,
improving productivity, simplifying the design processes, and redu-
cing costs.
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